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Abstract

This paper presents an efficient numerical method that approximates the complex eigenvalues and eigenvectors in

structural systems with viscoelastic damping materials, characterised by the complex structural damping matrix. This new

method begins from the solution of the undamped system and approximates the complex eigenpair by finite increments

using the eigenvector derivatives and the Rayleigh quotient. It is implemented in three different approaches: single-step,

incremental and iterative schemes. The single-step technique is presented for systems with low and medium damping. From

numerical examples, it can be verified that the errors committed by the approximate single-step technique with respect to

the exact solutions, obtained by the IRAM method, are less than 0.2% when the loss factor of the material damping is

lower than 1; this is a considerable improvement on other approximate methods. For higher damped systems an

improvement to the previous approach is proposed by an incremental technique that keeps the accuracy without

significantly increasing the computational time. The complex eigenproblem for materials whose mechanical properties are

dependent on frequency is solved by a fast iterative approach, whose validity is proved using a four-parameter fractional

derivative model.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Surface damping treatments with viscoelastic materials are the passive damping techniques more commonly
used for noise and vibration reduction [1–3]. For viscoelastic materials, the stress–strain relationship, s� e,
can be written in a simple way considering the complex modulus E� of the material [4,5], given by

s ¼ E�e, (1)

where

E� ¼ E0 þ iE00ð Þ ¼ Eð1þ iZÞ, (2)
ee front matter r 2006 Elsevier Ltd. All rights reserved.

v.2006.02.016

ing author. Tel.: +34 943 794700; fax: +34 943 791536.

esses: fcortes@eps.mondragon.edu (F. Cortés), mjelejabarrieta@eps.mondragon.edu (M.J. Elejabarrieta).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2006.02.016
mailto:fcortes@eps.mondragon.edu
mailto:mjelejabarrieta@eps.mondragon.edu


ARTICLE IN PRESS

Nomenclature

c Nelson’s scalar
c Fox and Kapoor’s vector
E elasticity modulus
Er modal strain energy
E� complex modulus
E0 storage modulus
E00 loss modulus
f vector used to compute the eigenderiva-

tives
F nodal force vector
H structural damping matrix
i imaginary unit,

ffiffiffiffiffiffiffi
�1
p

k stiffness of the damper
K stiffness matrix
l length of a finite element
L length of the beam
m mass
M mass matrix
n size of the system
qmax maximum number of increments
u nodal displacement vector
v Nelson’s vector
w Wang’s vector
b fractional parameter
d Wang’s scalar
e strain
Z loss factor
k iteration error
l eigenvalue
L diagonal matrix of truncated eigenvalues

r volumetric density
s stress
t relaxation time
/ eigenvector
/0r2 Zhang and Zerva’s residual vector
U complete modal matrix
F̄ truncated modal matrix
W Zhang and Zerva’s matrix
o circular frequency

Subscripts and indices

0 static property
e elastic property
i finite element index
j iteration index
k vector component index
m truncation order index
q incremental index
r modal index
v viscoelastic property
N asymptotic property

Superscripts

* complex number
T transpose operator
H hermitian or complex conjugate trans-

pose operator
(�)0 derivative of (�)
�1 inverse operator
+ pseudoinverse operator
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E ¼ E0 and E00 are the storage and the loss modulus, respectively, and Z is the loss factor, given by

Z ¼
E00

E0
. (3)

The frequency and temperature dependence of the storage modulus E and loss factor Z distinguishes
viscoelastic damping from other damping mechanisms [6]. Park [7] and Adhikari [8] discuss different
approaches to the mathematical modelling of the behaviour of viscoelastic materials.

The analysis of complex geometry structures whose behaviour cannot be simplified to that of a beam or a
plate needs to employ numerical techniques such as the finite element method (FEM) [9,10], which provides a
matrix system given by

M€uþ Kþ iHð Þu ¼ F, (4)

where M, K and H are the mass, stiffness and structural damping matrices and u and F are the nodal
displacement and force vectors, respectively. Normally, stationary (steady-state) systems are analysed in
frequency-domain [11]. When the coefficients of the matrices are constant, Eq. (4) may be solved by the modal
superposition technique, and the variable damping systems by the direct frequency method. The
computational effort of the direct frequency method lies in solving the dynamic system equations, while in
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the modal superposition method it lies in solving the complex eigenproblem. For large-scale systems, the
complex eigenpair may be calculated by the classical methods of Lanczos [12] or Arnoldi [13], and more
recently, the complex subspace iteration method [14]. However, these methods are not effective when the
dynamical properties of viscoelastic materials are dependent on frequency, thus approximate methods are
commonly used, e.g. the modal strain energy (MSE) (see Refs. [15–18] on the origins of this method) if
the assumption of small damping is made, Zo0:1. This approximate method consists of solving the undamped
eigenproblem and estimates the modal loss factor as follows:

Zr ¼

Pn
i¼1ZiEr;iPn

i¼1Er;i
, (5)

where Zr is the loss factor estimated for the rth mode, Zi the material loss factor of the ith finite element, n the
total number of elements in the system and Er;i the strain energy of the rth mode stored into the ith finite
element, given by

Er;i ¼
1

2
/T

r Ki/r, (6)

where Ki is the elastic stiffness matrix of the ith element, /r is the rth eigenvector of the undamped system or
normal eigenvector and (�)T denotes the transpose vector. When the damping is variable with frequency, the
iterative MSE modality consumes large computational time.

In short, an efficient method that solves the complex eigenproblem in structural systems with structural
damping variable with frequency discretised by FEM is presented in this paper. The definition of the problem
is given by

�l�r ðMe þMvÞ þ Ke þ KvðoÞ þ iHðoÞ
� �

/�r ¼ 0, (7)

whereMe andMv are the mass matrices of the elastic and viscoelastic materials, Ke is the stiffness matrix of the
elastic materials, KvðoÞ and H(o) are the real and imaginary parts of the complex stiffness matrix K�v ðoÞ of
the viscoelastic materials, K�v ðoÞ ¼ KvðoÞ þ iHðoÞ, which depends on circular frequency o, and l�r and /�r are
the complex eigenvalue and eigenvector of the rth mode, respectively. The present method computes the
complex eigenvalues and eigenvectors from the undamped solution using the eigenvector derivatives and the
Rayleigh quotient. Consequently, the usual methods for computing the eigenpair derivatives in undamped
systems with non-repeat eigenvalues are revised in Section 2. Next, the new approximate method that solves
the complex eigenproblem where the complex modulus is constant with frequency is presented. The general
case in which the damping is variable with frequency is analysed in Section 4. Some numerical applications are
made in Section 5 to prove the efficacy of the method. The algorithms of the proposed procedures are
compiled in the Appendix.

2. Theoretical background

2.1. Derivatives of eigenvalues and eigenvectors

The eigenvalue and eigenvector derivatives are commonly employed in structural optimisation and
sensitivity analysis and in the study of stochastic systems. A revision of the methods to compute the
eigenderivatives in undamped systems is made in Ref. [19]. These derivatives are calculated from the
generalised eigenvalue problem, given by

�lrMþ Kð Þ/r ¼ 0, (8)

where the n order mass M and stiffness K matrices are real, symmetric and positive-definite and lr and /r are
the corresponding rth eigenvalue and eigenvector. The latter may be arbitrarily normalised [11] as Eq. (9)
indicates,

/T
r M/r ¼ mr, (9)
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where mr is the modal mass. A frequently used technique is to normalise the eigenvectors with respect to the
unit modal mass, in which mr ¼ 1. The eigenderivatives of the rth mode is obtained by differentiating Eq. (8),

�l0rM/r þ ð�lrM
0 þ K0Þ/r þ ð�lrMþ KÞ/0r ¼ 0, (10)

where (�)0 represents the derivative with respect to any parameter. Premultiplication by /T
r yields

�l0r/
T
r M/r þ /T

r ð�lrM
0 þ K0Þ/r þ /T

r ð�lrMþ KÞ/0r ¼ 0, (11)

where the last term of the left-hand side of the equation is zero by virtue of Eq. (8) and of the symmetry of the
matrices; then, the derivative of the rth eigenvalue becomes

l0r ¼
/T

r ð�lrM
0 þ K0Þ/r

/T
r M/r

. (12)

If a vector fr is defined as

fr ¼ �ð�lrM
0 þ K0 � l0rMÞ/r, (13)

then a relationship between the eigenvector derivative /0r and fr can be deduced from Eq. (10),

ð�lrMþ KÞ/0r ¼ fr, (14)

where /0r cannot be solved directly because the matrix ð�lrMþ KÞ is singular. The immediate technique to
solve Eq. (14) is to employ the pseudoinverse matrix (�)+,

/0r ¼ ð�lrMþ KÞþfr, (15)

which can be calculated by the singular value decomposition (SVD) technique [20], which implies large
computational efforts. Therefore in recent years several methods that facilitate the evaluation of the
eigenvectors derivatives have been developed. The classical methods that calculate the derivative of non-
repeating eigenvectors are the Nelson’s [21] and Fox and Kapoor’s [22] methods. From the latter some
improvements have been developed for truncated systems such as the proposed by Wang [23] and by Zhang
and Zerva [24].

2.2. The Nelson’s method

The Nelson’s method decomposes the derivative of the eigenvector /0r in two terms: a particular solution vr

and another homogeneous cr/r,

/0r ¼ vr þ cr/r, (16)

where the scalar cr is obtained by previously differencing Eq. (9),

2/T
r M/0r þ /T

r M
0/r ¼ 0, (17)

and then Eqs. (16) and (17) may be combined to give

cr ¼ �/T
r Mvr �

1

2
/T

r M
0/r, (18)

where the unit modal mass normalisation is assumed. The vr vector is calculated by a pivoting procedure in
Eq. (14). The advantage of this method is that for calculating the exact derivative of an eigenvector it is only
necessary to know the corresponding eigenvalue and eigenvector. But the pivoting procedure requires large
computational time and extensive memory space.

2.3. The Fox and Kapoor’s method

This method, also known as the modal superposition method, involves that the eigenvector derivative /0r
can be derived by means of a linear combination of all the modes of the system,

/0r ¼ U cr, (19)
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where the matrix U represents the complete modal base. To calculate the cr vector, Eq. (19) is substituted in
Eq. (10) and it is premultiplied by any eigenvector /T

k , kar, then the M and K-orthogonality property of the
eigenvectors [11] provides

crðkÞ ¼

/T
r fr

lk � lr

; rak;

� 1
2
/T

r M
0/r; r ¼ k;

8><
>: (20)

where cr(k) is the kth element of the cr vector. This method is simple to be implemented, but to obtain the exact
solution, the complete modal base is required. The inconvenient of this method lies in large-scale systems, in
which it is necessary to calculate more modes than those which are really necessary. Although enough
accuracy can be obtained by truncating from a certain mode, there are variants that propose an improvement
including a residual term, such as the Wang’s and the Zhang and Zerva’s methods.

2.4. The mode truncation improvements

Wang [23] proposes to compute only m eigenvalues, mon, using an incomplete modal base U.
Wang suggests to add a residual static correction factor drwr for reducing the error due to the modal
truncation as follows:

/0r � Ucr þ drwr, (21)

where the wr vector indicates the direction of the residual term and the dr scalar is the scale factor. To calculate
wr, Eq. (21) is introduced into Eq. (14) employing dr ¼ 1, so that

ðK� lrMÞwr ¼ fr � ðK� lrMÞUcr (22)

is obtained. The singularity of the term ð�lrMþ KÞ that multiplies wr is avoided by assigning lr ¼ 0 (static
residual) and then the linear equations system

Kwr ¼ fr � ðK� lrMÞUcr (23)

can be solved for wr and finally the scale factor dr yields

dr ¼
wT

r fr

wT
r ðK� lrMÞwr

. (24)

Zhang and Zerva [24] propose an iterative method in which the static residual term /0r2;j, at jth iteration, is
written as

/0r2;j ¼ Wfr þ lrWM/0r2;j�1, (25)

where

W ¼ K�1 �UK�1U
T

(26)

and

K ¼ diagðl1; l2; . . . ; lmÞ. (27)

In contrast to the approximate Wang’s method, the Zhang and Zerva’s iterative modality converges to the
exact solution.

3. The proposed method for constant damping

3.1. Introduction

The complex eigenproblem of Eq. (7) with constant damping is given by

�l�rMþ K�
� �

/�r ¼ 0, (28)
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where M and K� are the mass and the complex stiffness matrices of the complete system and l�r and /�r are the
rth complex eigenvalue and eigenvector, respectively. The proposed method begins from the undamped
eigensolution given by

�lr;0Mþ K
� �

/r;0 ¼ 0, (29)

where K is the elastic stiffness of the undamped system and lr;0 and /r,0 are the real undamped eigenpair. By
considering the damping of the system, the stiffness matrix is increased a quantity DK�, so that

K� ¼ Kþ DK�, (30)

where

DK� ¼ iH, (31)

while M matrix remains constant. Thus, the eigenpair will be modified as follows:

l�r ¼ lr;0 þ Dl�r (32)

and

/�r ¼ /r;0 þ D/�r , (33)

where Dl�r and D/�r are the complex eigen-increments. The proposed method computes an approximation of
the increments of the eigenpair by taking the derivatives of Eqs. (10) and (12) as linear finite increments, with
DM ¼ 0, given by

�Dl�rMþ DK
� �

/r;0 þ ð�lr;0Mþ KÞD/�r ¼ 0 (34)

and

Dl�r ¼
/T

r;0DK
�/r;0

/T
r;0M/r;0

. (35)

Different modalities may be employed to compute the finite increment D/�r : SVD, Nelson, Fox and Kapoor,
Wang and Zhang and Zerva techniques. A three-stage study will be done:
(1)
 On the first stage, it is assumed that the eigenvectors of the damped system are the same than those of the
undamped. It will be proved that this approach is equivalent to the MSE method, thus it is valid for small
damping, where Zo0:1;
(2)
 A single-step technique is applied to compute D/�r and Dl�r on the second stage. The numerical
applications of Section 5 will prove that this scheme is applicable in systems with medium damping, in
which Zo0:5. It will be also deduced that Fox and Kapoor and Nelson modalities are the most efficient for
full and truncated problems, respectively;
(3)
 On the last stage D/�r and Dl�r are evaluated by multiple steps through an incremental technique with the
purpose to be applied in systems with higher damping, where Z40:5.
3.2. First stage: the eigenvectors do not change

For the first approach, it is assumed that the eigenvectors of the system are not influenced by damping,
consequently they are the same as those of the undamped system, which implies that the increment of the
eigenvector D/�r is zero,

D/�r ¼ 0. (36)

Since the mass matrix does not change, M0 ¼ 0, the derivative of any rth undamped eigenvalue taking Eq. (12)
yields

l0r ¼
/T

r;0K
0/r;0

/T
r;0M/r;0

. (37)
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Next, by means of linear approximation, the finite increment of the eigenvalue becomes

Dl�r �
/T

r;0DK
�/r;0

/T
r;0M/r;0

¼ i
/T

r;0H/r;0

/T
r;0M/r;0

, (38)

which implies that the eigenvalue of the damped system l�r may be approximated according to

l�r � lr;0 þ Dl�r � lr;0 þ i
/T

r;0H/r;0

/T
r;0M/r;0

, (39)

wherefrom two important conclusions are drawn:
(1) The approximation of the eigenvalue of the damped system can be evaluated by the Rayleigh quotient

using the undamped eigenvectors, as Eq. (42) shows. Indeed, the Rayleigh quotient is calculated for the rth
undamped mode by

lr;0 ¼
/T

r;0K/r;0

/T
r;0M/r;0

, (40)

if it is substituted in Eq. (39), then the approximation of the complex eigenvalue is written as

l�r ¼
/T

r;0K/r;0

/T
r;0M/r;0

þ i
/T

r;0H/r;0

/T
r;0M/r;0

, (41)

wherefrom it is deduced that the approximation of l�r is given by

l�r ¼
/T

r;0 Kþ iHð Þ/r;0

/T
r;0M/r;0

¼
/T

r;0K
�/r;0

/T
r;0M/r;0

, (42)

which represents the Rayleigh quotient using the undamped eigenvectors.
(2) The modal loss factor is exactly the same as the one computed by the MSE method. Indeed, the modal

loss factor Zr is defined by

l�r ¼ lr 1þ iZr

� �
, (43)

where lr is the real part of the complex eigenvalue. From Eqs. (39) and (40), the loss factor Zr yields

Zr ¼
/T

r H/r

/T
r K/r

, (44)

which is exactly the same result that the provided by the MSE method. Thus the application domain of the
first approach is restricted to small damping systems, where Zo0:1.

3.3. Second stage: single-step approach

An improvement is proposed by considering that the eigenvector varies due to the damping introduced into
the system as Eq. (45) indicates,

/�r ¼ /r;0 þ D/�r , (45)

and the eigenvalues are computed by means of the Rayleigh quotient,

l�r ¼
/�Tr K�/�r
/�Tr M/�r

. (46)

The present method may be implemented in different possible modalities in function of the procedure used for
the computation of the eigenvector increment D/�r : SVD, Nelson, Fox and Kapoor, Wang or Zhang and
Zerva. The numerical applications of Section 5 will confirm that the present method is more efficient using Fox
and Kapoor and Nelson varieties for full and truncated problems, which are summarised in Tables A1 and A2
of Appendix, respectively.
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3.4. Third stage: incremental approach

An improvement to the previous approach is proposed for systems with higher damping using an
incremental procedure. The simplest way to proceed is by dividing the total stiffness matrix variation DK� ¼
iH in qmax equal increments DK�q, according to

DK�q ¼
1

qmax

iH. (47)

The numerical applications of Section 5 will confirm that in systems with non-proportional damping in which
the loss factor is comprised between 0.5 and 1, two increments commit an error lesser than 0.1%. Tables A3
and A4 of Appendix show the algorithms for the proposed incremental method using the Fox and Kapoor and
the Nelson modalities, respectively.
4. The proposed method for variable damping

Since the properties of viscoelastic materials are dependent on frequency, the eigensystem becomes a
problem in which the coefficients of the matrices are dependent on eigenvalue as Eq. (48) indicates,

�l�r ðMe þMvÞ þ Ke þ KvðorÞ þ iHðorÞ
� �

/�r ¼ 0, (48)

where the natural frequency or of the rth mode is the real part of the square root of the complex eigenvalue l�r ,

or ¼ Re
ffiffiffiffiffi
l�r

q� �
. (49)

Here it is proposed to solve Eq. (48) by an iterative technique that begins by solving the problem with the static
properties of the viscoelastic material. Once the complex stiffness matrix is evaluated at the computed
eigenfrequency, the iterative method is applied in the way that is indicated in the scheme of Fig. 1. Tables A5
and A6 of Appendix show the algorithms for the present iterative method using the Fox and Kapoor and the
Nelson modalities, respectively. The convergence criterion kj may be defined as Eq. (50) indicates,

kj ¼ max
Re l�r;j � l�r;j�1
� �

Re l�r;j�1
� � ;

Im l�r;j � l�r;j�1
� �

Im l�r;j�1
� �

0
@

1
A, (50)

in this way it is assured that the eigenvalues converge in the imaginary and real part as well. In comparison
with the iterative MSE, the present method solves only once the undamped eigenproblem, while the MSE must
do it once for each iteration, which increases the computational cost.
5. Numerical applications

5.1. Problem definition

The complex modes of the axial vibration problem of the damped beam represented in Fig. 2 will be solved.
The beam is clamped on the left-hand side, and on the right-hand side a viscoelastic spring actuates, which is
modelled by complex stiffness. The material of the beam is considered elastic in all applications with except for
the last one, in which a complex modulus will be considered.

The beam is discretised in n standard truss finite elements. The Mi mass and Ki stiffness matrices of the ith
finite element are given by

Mi ¼
rSli

6

2 1

1 2

� 	
(51)
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Fig. 2. Beam with viscoelastic spring.
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and

Ki ¼
ES

li

1 �1

�1 1

� 	
, (52)

respectively, where r and E are the density and the elastic modulus of the material of the beam, S is the cross-
sectional area and li is the length of the ith finite element. For the numerical examples, n equal finite elements
will be chosen, that is li ¼ L=n, where L is the length of the beam. The numerical values r ¼ 7860 kg=m3,
E ¼ 210� 109 Pa, S ¼ 100� 10�6 m2 and L ¼ 1m are taken. The computations were carried out in double
arithmetic precision (16 digits) on a personal computer using Matlab [25] under windows environment.

The exact solution will be evaluated by the Implicit Restarted Arnoldi Method (IRAM) [26] implemented in
Matlab (‘eigs’ command) and in the free software ARPACK [27] that is specially conceived for solving large-
scale systems. The numerical applications are divided in three groups, which will prove the effectiveness and
accuracy of the single-step, incremental and iterative approach for systems with low-medium, high and
variable damping, respectively. The derivatives used by the present method are computed by different
modalities: the SVD, Nelson’s and Fox and Kapoor’s techniques for full solutions and also by the Wang’s and
by the Zhang and Zerva’s methods in truncated systems.

5.2. Numerical applications for the single-step approach

The CPU time is evaluated considering that the complex stiffness of the spring k� ¼ keð1þ iZÞ is constant,
ke ¼ 210� 105 N=m and Z ¼ 1. Tables 1 and 2 show the computational time, in seconds, employed to solve
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Table 1

CPU time (s) in function of the DOF of the system (full solution)

DOF 50 100 150 200 250 300

IRAM 0.141 0.468 1.360 3.297 6.484 11.41

T0 0.015 0.032 0.063 0.188 0.234 0.484

Present

SVD 0.374 3.829 18.03 64.31 190.1 392.5

Nelson 0.046 0.265 1.250 3.046 6.250 12.48

Fox and Kapoor 0.030 0.094 0.219 0.516 0.796 1.406

Table 2

CPU time (s) in function of the DOF of the system (truncated solution)

DOF 50 100 150 200 250 300 1000

IRAM 0.063 0.093 0.204 0.313 0.469 0.766 16.14

T0 0.125 0.141 0.203 0.250 0.329 0.422 7.594

Present

SVD 0.203 0.516 1.374 3.312 7.547 12.89 490.1

Nelson 0.125 0.155 0.249 0.392 0.588 0.844 12.81

Fox and Kapoor 0.125 0.141 0.203 0.265 0.345 0.437 7.844

Wang 0.125 0.172 0.249 0.391 0.563 0.782 13.06

Zhang and Zerva 0.140 0.204 0.469 0.797 1.423 2.219 62.87

Table 3

Error on modal properties in function of Z (full solution)

Z 0.001 0.1 0.5 1 2

o1(%) o0.001 o0.001 0.005 0.069 0.894

Z1(%) o0.001 o0.001 0.012 0.186 2.766

MAC1 E1 E1 0.99999 0.99987 0.99790
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the full and truncated (10 modes) problems, respectively, in a system from 50 to 1000 finite elements, that in
this case is equal to the DOF number of the system. In the first row of the tables the time needed to obtain the
exact solution by IRAM is showed. In the second one the T0 time is included, which represents the necessary
time for solving the undamped problem. The rest of the rows contain the time needed by the proposed method
using different modalities.

It can be pointed out that the proposed method using the Fox and Kapoor modality is faster than the exact
IRAM method, even if the latter is conceived for large scale systems. The Nelson modality is the fastest
between the methods for truncated solutions. Consequently, from now on these two modalities are exclusively
taken into account for the next applications.

The application range of the present scheme is evaluated using a system of 100 DOF. The accuracy is
estimated in function of the level of the loss factor of the damper, which is taken over the interval 0:001pZp2
(from the level of some metals to that of some elastomers). The accuracy for full and truncated (10 modes)
solutions is represented in Table 3 and in Table 4, respectively. The modal properties for exact solution,
computed by the IRAM method, are compared with these of the present method using the Fox and Kapoor
and the Nelson modalities. Only the solutions of the first mode are compared, because this is the mode that
has presented the highest error. The two first rows indicate in percentage the absolute value of the difference
on the natural frequency o1 and on the modal loss factor Z1, respectively, between IRAM and present
methods. In the third row the eigenvectors /�1 are compared through the Modal Assurance Criterion (MAC)
[11] method, which helps to evaluate the degree of correlation between two modal vectors /�i and /�j . It
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Table 4

Error on modal properties in function of Z (truncated solution)

Z 0.001 0.1 0.5 1 2

Present o1(%) o0.001 o0.001 0.005 0.069 0.894

— Z1(%) o0.001 o0.001 0.012 0.186 2.766

Nelson MAC1 E1 E1 0.99999 0.99987 0.99790

Present o1(%) o0.001 0.003 0.074 0.213 0.065

— Z1(%) o0.001 0.014 0.335 1.200 2.772

Fox and Kapoor MAC1 E1 0.99999 0.99999 0.99986 0.89382

Table 5

Improvement provided by incremental method (full solution)

Mode Present—Fox and Kapoor single-step approach Present—Fox and Kapoor 2 increments approach

or(%) Zr(%) MACr or(%) Zr(%) MACr

1 0.069 0.186 0.99987 0.017 0.061 0.99997

2 0.005 0.031 0.99987 0.001 0.013 0.99997

3 o0.001 0.002 0.99999 o0.001 o0.001 E1
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uniquely identifies a real scale between zero and one and it is defined by

MAC ¼
/�Hi /�j




 


2
/�Hi /�i
� �

� /�Hj /�j
� � , (53)

where (�)H denotes the complex conjugate transpose vector.
For low and medium damping, Zo0:5, the Fox and Kapoor modality commits errors on modal properties

minor than 0.1%, but losses precision when all modes are not employed whereas the Nelson modality is not
influenced by the truncation effect, because it uses exclusively the eigenpair under consideration. Therefore,
the present method is proposed with Fox and Kapoor derivatives for full problems and with Nelson when few
modes are required. In both cases the accuracy may be not enough for higher damped systems, where Z40:5,
for which the incremental approach is proposed.

5.3. Numerical applications for the incremental approach

For improving the accuracy of the present method in higher damped systems, the incremental approach will
be evaluated using a 100 DOF system, in which Z ¼ 1. Tables 5 and 6 compare the accuracy of the single-step
using the Fox and Kapoor and the Nelson modalities with the incremental scheme. For the Nelson case only 3
modes are computed.

From these two tables it can be pointed out that the accuracy has been increased more than 50% when 2
steps are used.

5.4. Numerical applications for variable damping

5.4.1. Numerical example 1

The frequency dependence of the complex stiffness k�ðoÞ of the damper will be modelled by a four-
parameter fractional derivative model [28], given by

k�ðoÞ ¼
k0 þ k1 itoð Þ

b

1þ itoð Þ
b , (54)
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Table 6

Improvement provided by incremental method (truncated solution)

Mode Present—Nelson single-step approach Present—Nelson 2 increments approach

or(%) Zr(%) MACr or(%) Zr(%) MACr

1 0.069 0.186 0.99987 0.017 0.064 0.99997

2 0.005 0.031 0.99987 0.001 0.011 0.99997

3 o0.001 0.002 0.99999 o0.001 o0.001 E1
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Fig. 3. Properties of the spring: (a) elastic stiffness keðoÞ and (b) loss factor ZðoÞ.

Table 7

Modal properties of the 3 DOF system with variable damping

Mode 1 Mode 2 Mode 3

l�r ¼ lrð1þ iZrÞ (10
9 rad2/s2) 0.0859+i 0.0050 0.7561+i 0.0058 2.4408+i 0.0074

or(10
3 rad/s) 9.273 27.50 49.40

Zr 0.0581 0.0077 0.0030

/�r (modulus 9 phase) 0.8668 90.9271 1.9537 90.0011 1.2539 9�0.2151
1.4413 90.2901 0.1252 99.3931 2.2207 9�0.0771
1.5302 9�1.0681 1.9461 9�0.0751 2.6789 90.1911
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where k0 and k1 represent the elastic and asymptotic stiffness, respectively, t is the relaxation time that is
related with the frequency at which the loss factor reaches its maximum value and b is the fractional
parameter, 0obo1, which is related with the maximum value of the loss factor. Fig. 3 represents the evolution
of the elastic stiffness keðoÞ and the loss factor ZðoÞ in function of the frequency o (in rad/s) when
k0 ¼ 5� 106 N=m, k1 ¼ 10� 106 N=m, t ¼ 10�4 s and b ¼ 0:9.

The bar, whose elastic modulus is E ¼ 210� 109 Pa, is still elastic, and a 3 DOF system is under study. The
exact solution is given by the IRAM method using an iterative technique, which provides the solution of the
three modes showed in Table 7: the eigenvalue l�r , the real natural frequency or, the modal loss factor Zr and
the eigenvector /r, normalised with respect to the unit modal mass.

Table 8 shows the error committed by the proposed iterative approach and by the iterative MSE, both
compared with the exact solution that was illustrated in Table 7.

From Table 8 it should be noted that the differences are more pronounced for the first mode, which is the
highest damped mode. It can also be pointed out that the present method is more accurate than the iterative
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Table 9

Modal properties of the 3 DOF system with variable damping (fully damping matrix)

Mode 1 Mode 2 Mode 3

l�r ¼ lrð1þ iZrÞ (10
9 rad2/s2) 0.0859+i 0.0187 0.7561+i 0.1501 2.4408+i 0.4818

or(10
3 rad/s) 9.320 27.63 49.64

Zr 0.2179 0.1986 0.1974

/�r (modulus 9 phase) 0.8674 90.27491 1.9537 90.0001 1.2547 9�0.1761
1.4416 90.08601 0.1229 9�1.7101 2.2212 9�0.0631
1.5284 9�0.31741 1.9462 9�0.0131 2.6775 90.1561

Table 8

Error on modal properties by iterative methods

Mode Present MSE

or(%) Zr(%) MACr or(%) Zr(%) MACr

1 o0.001 o0.001 E1 0.056 0.135 0.99957

2 o0.001 0.003 E1 0.001 0.003 0.99954

3 o0.001 o0.001 E1 0.001 0.002 0.99984

Table 10

Error on modal properties by iterative methods (fully damping matrix)

Mode Present MSE

or(%) Zr(%) MACr or(%) Zr(%) MACr

1 0.003 0.011 0.99991 0.005 0.020 0.99972

2 o0.001 0.002 0.99998 o0.001 o0.001 0.99960

3 o0.001 0.002 0.99999 o0.001 0.001 0.99986
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MSE. Besides, the former solves the undamped problem only once, while the latter must do it once in each
iteration, which increases the computational cost.

5.4.2. Numerical example 2

The imaginary part of the stiffness matrix of the previous system contains only a few non-zero entries. The
next example will consider that the material of the beam is also viscoelastic and it will be modelled by a
complex modulus E� ¼ Eð1þ iZÞ constant in frequency, where E ¼ 210� 109 Pa and Z ¼ 0:2. The same
fractional model of the previous section is taken for the complex stiffness k�ðoÞ of the damper. Indeed, while
the previous examples have been able to examine the influence of the truncation effect and of the level of the
loss factor on the accuracy, the aim of this example is to prove the new method in a fully populated damping
matrix. Table 9 shows the exact solution by IRAM and Table 10 illustrates the accuracy of the proposed
method.

It can be remarked that the conclusions of the previous example are also valid in this case in which the
damping matrix is fully populated.

6. Concluding remarks

An efficient numerical method that approximates the complex eigenvalues and eigenvectors in systems with
viscoelastic damping materials has been developed and implemented in a finite element environment. This new
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method begins from the solution of the undamped system and approximates the complex eigenpair by finite
increments using the eigenvector derivatives and the Rayleigh quotient. From the numerical examples it has
been proved that the Fox and Kapoor and the Nelson derivatives are the most efficient in full and truncated
problems, respectively. The numerical applications also have proved that the proposed numerical method is an
effective way for computing the complex eigenvalues and eigenvectors in systems with structural damping
matrix. In effect,
(a)
Tab

Algo

1. S

2. C

3. C

4. C

5. N

6. C
it was verified that errors committed by the approximate single-step technique with respect to the exact
solution are less than 0.1% when the loss factor of the material damping is lower than 0.5. This improves
considerably the precision of other approximate methods;
(b)
 for higher damped systems, the wished precision can be achieved with the incremental technique using the
appropriate number of increments without significantly increasing the computational time. The numerical
examples have confirmed that two increments commit an error less than 0.1% when the loss factor is
comprised between 0.5 and 1;
(c)
 in systems with variable damping, the iterative modality of the present method solves once the
eigenproblem of undamped problem, so the convergence time is accelerated in comparison to other
approximate methods. The only restriction of the method is that the real part of the eigenvalues must not
change substantially.
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Appendix. Algorithms

See Tables A1–A6.
At each iteration, the kr;j error used to compare with the convergence tolerance may be defined arbitrarily,

e.g. as it is indicated as follows:

kr;j ¼ max
Re l�r;j � l�r;j�1
� �

Re l�r;j�1
� � ;

Im l�r;j � l�r;j�1
� �

Im l�r;j�1
� �

0
@

1
A.
le A1

rithm for the single-step method using the Fox and Kapoor derivatives

olve the undamped problem ð�lr;0Mþ KÞ/r;0 ¼ 0, where /T
r;0M/r;0 ¼ 1.

ompute fr;0 :¼ �H/r;0.

onstruct the cr vector of dimension n;

for k from 1 to m, where mpn, do

if kar then crðkÞ :¼
/T

k;0fr

lk;0 � lr;0
,

if kar then crðkÞ :¼ 0.

ompute /�r :¼ /r;0 þ iU0cr.

ormalize /�r :¼
/�rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/�Tr M/�r

q :

ompute l�r :¼ /�Tr K�/�r .
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Table A3

Algorithm for the incremental method using the Fox and Kapoor derivatives

1. Solve the undamped problem ð�lr;0Mþ KÞ/r;0 ¼ 0, where /T
r;0M/r;0 ¼ 1.

2. Compute h� :¼ 1
qmax

iH.

3. For q from 1 to qmax do

4. For r from 1 to m do

5. Compute f�r;q :¼ �h
�/�r;q�1.

6. Construct the c�r;q vector of dimension n;

for k from 1 to m, where mpn, do

if kar then c�r;qðkÞ :¼
/�Tk;q�1f

�
r;q

l�k;q�1 � l�r;q�1
,

if k ¼ r then c�r;qðkÞ :¼ 0.

7. Compute D/�r;q :¼ U�q�1c
�
r;q.

8. Normalise /�r;q :¼
/�r;qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/�Tr;qM/�r;q

q .

9. Compute l�r;q :¼ /�Tr;q Kþ q h�ð Þ/�r;q.

Table A2

Algorithm for the single-step method using the Nelson derivatives

1. Solve the undamped problem ð�lr;0Mþ KÞ/r;0 ¼ 0, where /T
r;0M/r;0 ¼ 1.

2. Compute Dlr :¼ /T
k;0H/r;0.

3. Compute fr :¼ �ð�DlrMþHÞ/r;0.

4. Compute Gr :¼ �lr;0Mþ K.

5. Find the k position of the element with largest absolute value in /r;0 vector.

6. Construct Ḡr by zeroing out the k row and column of Gr and setting the k diagonal element to 1.

7. Construct f̄r by zeroing out the kth element of fr.

8. Solve vr from the linear equation system Ḡrvr ¼ f̄r.

9. Compute cr :¼ �/T
r;0Mvr.

10. Compute /�r :¼ /r;0 þ iðvr þ cr/r;0Þ.

11. Normalize /�r :¼
/�rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/�Tr M/�r

q .

12. Compute l�r :¼ /�Tr K�/�r .

Table A4

Algorithm for the incremental method using the Nelson derivatives

1. Solve the undamped problem ð�lr;0Mþ KÞ/r;0 ¼ 0, where /T
r;0M/r;0 ¼ 1.

2. Compute h� :¼ 1
qmax

iH.

3. For q from 1 to qmax do

4. Compute Dl�r;q�1 :¼ /�Tr;q�1 h
� /�r;q�1.

5. Compute f�r;q :¼ �ð�Dl
�
r;qMþ h�Þ/�r;q�1.

6. Compute G�r;q :¼ �l
�
r;q�1Mþ ðq� 1Þh�.

7. Find the k position of the element with largest absolute value in /�r;q vector.

8. Construct Ḡ
�

r;q by zeroing out the k row and column of G�r;q and setting the k diagonal element to 1.

9. Construct f̄
�

r;q by zeroing out the kth element of f�r;q.

10. Solve v�r;q from the linear equation system Ḡ
�

r;qv
�
r;q ¼ f̄

�

r;q.

11. Compute c�r;q :¼ �/�Tr;q�1Mv�r;q.

12. Compute /�r;q :¼ /�r;q�1 þ ðv
�
r;q þ c�r;q/

�
r;q�1Þ.

13. Normalize /�r;q :¼
/�r;qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/�Tr;qM/�r;q

q .

14. Compute l�r;q :¼ /�Tr;q Kþ q h�ð Þ/�r;q.
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Table A6

Algorithm for the iterative method using the Nelson derivatives

1. Solve the undamped problem �lr;0Mþ Ke þ K�v ð0Þ
� �

/r;0 ¼ 0 with /T
r;0M/r;0 ¼ 1.

2. Initialize j :¼ 1, define the convergence tolerance Tol and the maximum number of iterations jmax.

3. Repeat

4. Compute the real eigenfrequency or;j�1.

5. Compute DK�r;j�1 ¼ K�v ðor;j�1Þ � K�v ð0Þ.

6. Compute Dl�r;j�1 :¼ /T
r;0 DK

�
r;j�1 /r;0.

7. Compute f�r;j :¼ �ð�Dl
�
r;j�1Mþ DK�r;j�1Þ/r;0.

8. Compute G�r;j :¼ �lr;0Mþ Ke þ K�v ðor;j�1Þ.

9. Find the k position of the element with largest absolute value in /r;0 vector.

10. Construct Ḡ
�

r;j by zeroing out the k row and column of G�r;j and setting the k diagonal element to 1.

11. Construct f̄
�

r;j by zeroing out the kth element of f�r;j .

12. Solve v�r;j from the linear equation system Ḡ
�

r;jv
�
r;j ¼ f̄

�

r;j .

13. Compute c�r;j :¼ �/T
r;0Mv�r;j .

14. Compute /�r;j :¼ /r;0 þ v�r;j þ c�r;j/r;0

� �
.

15. Normalize /�r;j :¼
/�r;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/T
r;jM/�r;j

q .

16. Compute l�r;j :¼ /�Tr;j K
�ðor;j�1Þ/

�
r;j .

17. Compute the error kr;j and increase j :¼ j þ 1.

Until kr;jpTol or j4jmax.

Table A5

Algorithm for the iterative method using the Fox and Kapoor derivatives

1. Solve the undamped problem �lr;0Mþ Ke þ K�v ð0Þ
� �

/r;0 ¼ 0, where /T
r;0M/r;0 ¼ 1.

2. Initialize j :¼ 1, define the convergence tolerance Tol and the maximum number of iterations jmax.

3. Repeat

4. Compute the real eigenfrequency or;j�1.

5. Compute DK�r;j�1 ¼ K�v ðor;j�1Þ � K�v ð0Þ.

6. Compute f�r;j :¼ �DK
�
r;j�1/r;0.

7. Construct the c�r;j vector of dimension n;

for k from 1 to m, where mpn, do

if kar then c�r;qðkÞ :¼
/T

k;0f
�
r;j

lk;0 � lr;0
,

if k ¼ r then c�r;jðkÞ :¼ 0.

8. Compute /�r;j :¼ /r;0 þU0c
�
r;j .

9. Normalize /�r;j :¼
/�r;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

/�Tr;j M/�r;j

q .

10. Compute l�r;j :¼ /�Tr;j K
�ðor;j�1Þ/

�
r;j .

11. Compute the error kr;j and increase j :¼ j þ 1.

Until kr;jpTol or j4jmax.
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